Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway.

نویسندگان

  • Weirong Xing
  • Sheila Pourteymoor
  • Subburaman Mohan
چکیده

Mouse genetic studies reveal that ascorbic acid (AA) is essential for osteoblast (OB) differentiation and that osterix (Osx) was a key downstream target of AA action in OBs. To determine the molecular pathways for AA regulation of Osx expression, we evaluated if AA regulates Osx expression by regulating production and/or actions of local growth factors and extracellular matrix (ECM) proteins. Inhibition of actions of IGFs by inhibitory IGFBP-4, BMPs by noggin, and ECM-mediated integrin signaling by RGD did not block AA effects on Osx expression in OBs. Furthermore, blockade of components of MAPK signaling pathway had no effect on AA-induced Osx expression. Because AA is required for prolyl hydroxylase domain (PHD) activity and because PHD-induced prolyl-hydroxylation targets proteins to proteosomal degradation, we next tested if AA effect on Osx expression involves activation of PHD to hydroxylate and induce ubiquitin-proteosome-mediated degradation of transcriptional repressor(s) of Osx gene. Treatment of OBs with dimethyloxallyl glycine and ethyl 3, 4-dihydroxybenzoate, known inhibitors of PHD, completely blocked AA effect on Osx expression and OB differentiation. Knockdown of PHD2 expression by Lentivirus-mediated shRNA abolished AA-induced Osx induction and alkaline phosphatase activity. Furthermore, treatment of OBs with MG115, inhibitor of proteosomal degradation, completely blocked AA effects on Osx expression. Based on these data, we conclude that AA effect on Osx expression is mediated via a novel mechanism that involves PHD2 and proteosomal degradation of a yet to be identified transcriptional repressor that is independent of BMP, IGF-I, or integrin-mediated signaling in mouse OBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of Prolyl Hydroxylase Domain Protein in the Rosiglitazone-Induced Suppression of Osteoblast Differentiation

Rosiglitazone is a well-known anti-diabetic drug that increases insulin sensitivity via peroxisome proliferator-activated receptor γ (PPARγ) activation, but unfortunately it causes bone loss in animals and humans. A previous study showed that prolyl hydroxylase domain protein (PHD) plays a role in rosiglitazone-induced adipocyte differentiation. Based on the inverse relationship between adipocy...

متن کامل

Endothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells

BACKGROUND The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and sub...

متن کامل

Regulation of collagen biosynthesis by ascorbic acid: a review.

L-ascorbic acid is an essential cofactor for lysyl hydroxylase and prolyl hydroxylase, enzymes essential for collagen biosynthesis. In addition, L-ascorbic acid preferentially stimulates collagen synthesis in a manner which appears unrelated to the effect of L-ascorbic acid on hydroxylation reactions. This reaction is stereospecific and unrelated to intracellular degradation of collagen. The ef...

متن کامل

Targeted disruption of nuclear factor erythroid-derived 2-like 1 in osteoblasts reduces bone size and bone formation in mice.

Previous in vitro studies found that nuclear factor erythroid-derived 2-like 1 (NFE2L1) was involved in mediating ascorbic acid-induced osterix expression and osteoblast differentiation via binding to the antioxidant response element of the osterix promoter. To test the role of NFE2L1 in regulating bone formation in vivo, we disrupted NFE2L1 specifically in osteoblasts. Mice expressing Cre unde...

متن کامل

Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice

Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 43 12  شماره 

صفحات  -

تاریخ انتشار 2011